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Abstract

While the use of multiple dimensions in separation systems can create very high peak capacities, the effectiveness
of the enhanced peak capacity in resolving large numbers of components depends strongly on whether the
distribution of component peaks is ordered or disordered. Peak overlap is common in disordered distributions,
even with a very high peak capacity. It is therefore of great importance to understand the origin of peak
order/disorder in multidimensional separations and to address the question of whether any control can be exerted
over observed levels of order and disorder and thus separation efficacy.

It is postulated here that the underlying difference between ordered and disordered distributions of component
peaks in separation systems is related to sample complexity as measured by a newly defined parameter, the sample
dimensionality s, and by the derivative dimensionality s’. It is concluded that the type and degree of order and
disorder is determined by the relationship of s (or s') to the dimensionality n of the separation system employed.
Thus for some relatively simple samples (defined as having small s values), increased order and a consequent
enhancement of resolution can be realized by increasing n. The resolution enhancement is in addition to the normal
gain in resolving power resulting from the increased peak capacity of multidimensional systems. However, for other
samples (having even smaller s values), an increase in n provides no additional benefit in enhancing component

separability.

1. Introduction

Multidimensional separation techniques con-
stitute a powerful class of methods in which two
or more independent separative steps are linked
together for separation. For many difficult sam-
ples having numerous components, these some-
what complicated techniques provide remarkable
gains in resolving power, beyond anything im-
aginable with one-dimensional (linear) systems
such as single chromatographic columns. How-
ever, somewhat surprisingly, for other difficult
samples whose components are equally numer-
ous and similarly hard to resolve, multidimen-
sional techniques offer no advantages. We con-

clude that there is some intrinsic property of
analytical samples (other than the number m of
components) that determines their amenability
to multidimensional techniques. It is the thesis of
this paper that the key property is a very basic
one related to sample variability. We call this
property sample dimensionality. It is also reason-
able to argue that once the sample dimensionali-
ty is established. general conclusions can be
drawn about important behavioral characteristics
of the sample in different multidimensional sys-
tems. This relationship suggests that systematic
rules can be promulgated in order to better
match multidimensional systems to the nature of
the sample under consideration.
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The principal advantage of multidimensional
separation is that it provides, relative to one-
dimensional or linear techniques. a greatly en-
hanced peak capacity, which represents the max-
imum number of components theoretically separ-
able in the system. Multidimensional procedures
also yield a larger number of parameters for the
characterization and identification of compo-
nents: Whereas for linear systems only one
parameter (e.g., the distribution coefficient for
chromatographic systems) characterizes separa-
tive displacement, in an n-dimensional procedure
there are n such parameters associated with the
component, which makes its identification much
more certain,

While the above advantages are substantial. so
are the difficulties of implementing multidimen-
sional methods. Not only are several separation
stages necessary, but the effective coupling be-
tween stages can be difficult. Consequently. it is
important to carefully design the separation
system so that it appropriately deals with (i.e.,
provides an approximate match with) the ana-
lytical problem. Both overdesigning and under-
designing can be costly in terms of apparatus
complexity, design time, run time. and operator
involvement on one hand, and inadequate data
and poorly characterized samples on the other.
A number of system requirements that relate to
the sample are obvious: good selectivity, suitable
peak spacing, and adequate peak capacity in
every stage along with the substantial indepen-
dence of successive stages relative to the sample.
In this paper we will focus on sample dimen-
sionality as a new sample parameter that strongly
influences component resolution in relationship
to the dimensionality of the separation system.

Each separation system has its own unique
dimensionality #: For linear systems it is one
(n = 1), for planar beds it is two (n =2), and for
coupled column systems it can range from one to
three or more. According to the theme of this
paper, analytical samples have their own dimen-
sionality, which we label as s. This also can range
from one to three or more. but it is commonly
higher. Certain generic separation patterns are
expected to emerge depending on the relative
values of these two dimensionalities. In par-

ticular. the relative value of n and s is expected
to have a profound effect on the order and
disorder of peak spacing, which in turn exerts a
strong influence on peak separability. The under-
lying concepts that give rise to these relation-
ships are explained in the following section.

2. Background concepts
2.1. Order, disorder, and peak capacity

In recent years it has become increasingly
clear that the analytical certainty desired from
chromatography and related separation methods
suffers gravely when the distribution of com-
ponent peaks is governed by statistical factors
[1-6]. For example, a mixture of m components
can be completely resolved and characterized in
a column of minimum peak capacity, n,=m,
providing the component peaks are distributed at
uniform intervals (relative to peak width) across
the chromatogram. By contrast, if the m com-
ponents are distributed randomly (as specified
generally by a Poisson process), a peak capacity
ten times the minimum value m (requiring a
hundredfold gain in the number N of theoretical
plates) is needed to adequately resolve only 82%
of the m components. To resolve 98% of the
components, n, must exceed m by a (usually
unattainable) factor of 100, requiring an increase
in N of ~100° or 10 000. By way of example,
100 ordered component peaks can be resolved
on a column of about 40 000 plates, whereas to
resolve only 82 of 100 random component peaks
requires ~4-10° plates. In general, then, when
peak distribution is random rather than ordered,
the application of enormously greater effort is
inevitably met with substantially inferior results
[1].

Despite the importance of the issue of order
versus disorder in experimental chromatograms,
little work has been done to define the criteria
for their development. Davis and Giddings [1]
discussed the likely development of disordered
chromatograms for complex samples (those
whose components come from a number of
chemical families). The analysis of the ex-
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perimental chromatograms of complex samples
by these same authors showed the peak spacing
to be random. in agreement with theoretical
arguments [2]. Guiochon and co-workers have
also demonstrated randomness for a variety of
systems [3,4], as have Dondi et al. [5]. However,
the concept of “complex samples™ has not been
adequately developed to be quantitatively useful.

Because the concepts underlying the develop-
ment of order and disorder in component peak
distribution have been neglected, it follows that
no means are known to gain control over disor-
der. While it is unlikely that significant gains in
resolving power can be realized by controlling
disorder for highly complex samples, advances in
this area for less complex samples are imaginable
and would be quite useful. The gain or loss of
such control is found here to depend on the
dimensionality n of the separation system.

Our approach to this problem starts with the
concept of sample dimensionality, s, and the
derivative dimensionalities, s’ and s”. Parameter
s is proposed as a measure of sample complexity.
Most importantly in the present context, argu-
ments are developed to suggest that s (or s') is a
predictor of component peak disorder in chro-
matograms. However, disorder is not expected
to depend solely on the sample parameter s, but
rather on the relationship of s to the system
parameter n, the system dimensionality. Values
of n are subject to some control with the flexible
use of multidimensional separation methods.
This advances the possibility that variations in n
can be used in certain cases to limit disorder in
the distribution of component peaks and thus to
greatly improve the quality of analytical results
in these cases.

2.2. System dimensionality

Multidimensional separation techniques are
those in which different separation steps or
stages, based on different mechanisms. are
linked according to certain criteria (see antece-
dent article {7]; also Ref. [8]). The number of
different stages can be defined as the dimen-
sionality, n#. For planar beds, n =2 (i.e., the
system is two dimensional or 2D) providing

different separation mechanisms are employed
along the two axes [9]. (If the planar separation
follows solvent extraction, another stage and
another dimension is added to the system as a
whole, making n =3.) For coupled column sys-
tems, the dimensionality can be two, three, or
higher depending on the number of successive
stages linked together [7]. (The essential equiva-
lence of a 2D separation on a plane and a 2D
separation in a coupled column system is out-
lined in the antecedent article [7].)
Multidimensional techniques have been recog-
nized as providing a greatly enhanced peak
capacity (n.) relative to linear systems, thus
substantially reducing peak saturation (m/n.)
and the resulting statistical overlap of component
peaks from complex samples [7-10]. In effect,
multidimensional systems provide more *‘space”
than 1D systems, allowing component peaks to
spread out across additional coordinates, thus
reducing peak overlap. Fig. 1 shows component
peaks distributed (rather randomly) over a 2D
plane, which has sufficient space to minimize the
overlap of individual peaks (represented by spots
in the figure). When all these components are
compressed onto a single axis (as would be the

X 2 ¢ “ .

X1

Fig. 1. Component peaks or spots distributed randomly over
a two-dimensional plane. The 2D plane has more “space”
and thus more peak capacity than either of its two axes. Thus
components are able to spread out and peak overlap is
reduced in the 2D space compared to that in a 1D separation.
The crowding together of peaks in a single dimension
(representing a 1D separation) is illustrated in the figure by
projecting the peak positions in the plane onto the single axis
x,. In this projection onto x,. each peak is represented by a
line: the crowding of lines along axis x, leads to excessive
peak overlap.
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case for a 1D separation), the peaks (whose
centers are now represented by lines on the x|
axis) become very crowded and will seriously
overlap one another due to finite band broaden-
ing. In general, a reduction in peak crowding
(saturation) and thus peak overlap will be real-
ized whenever system dimensionality is in-
creased, independently of whether the gain in n
is achieved by using a planar system or a coupled
column arrangement.

We develop evidence here to suggest that
component separation for some samples may be
greatly improved, independently of reduced satu-
ration, with increasing system dimensionality.
The improvement is expected solely as a conse-
quence of increasing order in the peak distribu-
tion. Conversely, for less complex samples, no
gains in resolving power for either of the two
reasons are expected with increasing system
dimensionality.

2.3. Sample dimensionality

The critical sample parameter that character-
izes a sample’s varied response to the system
dimensionality » is the sample dimensionality s.
The parameter s is defined here as the number of
independent variables that must be specified to
identify the components of the sample. It is
assumed (as part of this definition) that the
properties of the components, including chro-
matographic retention parameters, vary in some
systematic way with the s variables. (A sys-
tematic dependence implies that a definitive
trend exists, whether or not the theoretical basis
of the trend is understood.) The variables under
consideration can generally be taken as structur-
al factors that collectively yield molecular identi-
ty.

A few simple examples will illustrate the
nature of s. If we know that our sample consists
entirely of saturated straight-chain fatty acids.,
then the components of the mixture can be fully
specified in terms of one variable, which can be
chosen as either carbon number or molecular
mass. (This variable is referred to later as a
sample parameter.) This one-variable specifica-
tion serves to define a one-dimensional (1D)
sample. If now we choose a fatty acid sample of

variable carbon number in which the straight
chain has one substituent group or double bond,
the sample acquires a second dimension: the
position of the group or double bond.

Going a step further, a sample in which the
fatty acid molecules may have 0, 1, or 2 substi-
tuted groups of a given kind in different places is
a four-dimensional sample. One coordinate is
carbon number, another specifies the number of
groups (0, 1, or 2), a third may be chosen to give
the position of the group closest to the carboxyl
end, and a fourth to locate the most distant
group. (The dimensionality is reduced to three if
the variables describing group position are as-
signed the value ‘“zero” for the absence of a
group. In this case specification of the number of
groups is redundant. However, this lower di-
mensionality is not consistent with the require-
ment for systematic behavior as imposed above.)

For linear polymers (e.g., polystyrene) where
components are specified by one variable, name-
ly chain length, s = 1. For a copolymer of A and
B groups arranged in the form A, -B, the
dimensionality is two, corresponding to the two
variables n, and n,.

Returning to the one-dimensional sample of
saturated unsubstituted fatty acids, as long as the
separative displacement (measured by retention
time, electrophoretic mobility, and so on) varies
systematically with carbon number, giving an
ordered distribution of component peaks, the
sample can be fully separated in a 1D system of
adequate peak capacity. Importantly, there is
little to be gained in employing a two-dimension-
al (2D) or higher dimensional system to deal
with this 1D sample, despite their larger peak
capacities. If we choose a 2D approach in which
each of the two separative displacements of the
1D sample depends upon carbon number in a
systematic way, then the two displacements will
be strongly correlated and there will be little if
any increase in separation power [9]. When
strong correlation exists between displacements,
component peaks tend to fall in a narrow band in
the 2D space (see Fig. 2). Correlation therefore
prevents the utilization of the expanded space
available in the 2D system [9]. In effect, there is
no significant gain in peak capacity over that
available in a 1D system and the separation



J.C. Giddings i J. Chromatogr. A 703 (1995) 3—15 7

Fig. 2. Component displacements along the two axes of a 2D
separation system are strongly correlated for a 1D sample.
Consequently, components fail to expand into the full 2D
space and as a result the large peak capacity available in 2D
systems 1s not utilized by 1D samples.

shows little (if any) improvement over that
achievable along a single separation axis (equiva-
lent to a 1D system).

Once we choose a 1D separation system, it is
important, of course, to match the resolving
power insofar as possible to the analytical de-
mands. For the fatty acid one will normally wish
to separate every homolog (or its derivative); if
the number m of homologs is not large, sepa-
ration can usually be achieved with relatively few
theoretical plates. In such a case the peak
capacity n. need not be much larger than m.
However, for 1D samples with large m. such as
linear polymer samples, all the homologs cannor
(and normally need not) be resolved in a 1D
chromatographic system. Again, a 2D system
does not significantly improve the situation.

For the monosubstituted fatty acids, s =2, any
given separative displacement will normally ex-
hibit a systematic (although not equal) depen-
dence on both variables: chain length and group
position. In this case two dimensions (two sepa-
ration mechanisms) are justified for the sepa-
ration system provided that one can achieve
independent migration (combined with reason-
ably high selectivity) along the two separation
coordinates. This simply means that the two
different sample variables influence the two
separative displacements dissimilarly or at least
that the two sample factors are weighted differ-
ently in their effect upon the two displacements.
Ideally but infrequently, one factor (carbon

number) controls one displacement and the other
factor (group position) controls the second dis-
placement.

The same considerations apply to polymer
analysis. To characterize linear polystyrene or
polyethylene we need only determine the chain
length or molecular mass distribution. This is
best approached using a one-dimensional sepa-
ration system such as size exclusion chromatog-
raphy or thermal field-flow fractionation. While
we must be careful to generate enough resolving
power to satisfy our analytical needs, nothing is
gained by utilizing a second dimension.

If we must fully characterize the copolymer
sample A, -B, (generally necessary if the rel-
evant properties depend simultaneously on chain
length and on the relative amount of the two
constituent polymers), a 1D system, no matter
what its resolving power, will no longer suffice.
Such a problem requires two dimensions. Ran-
dom copolymers, by contrast, are more complex
and have higher dimensionality; they cannot be
fully characterized in a 2D system. Nonetheless,
for reasons to be discussed later, useful infor-
mation is still forthcoming on such polymers
from a 2D system under the right circumstances.

If we attempt to separate the components of a
2D material in a linear (1D) system, the re-
sulting band pattern will generally be disordered;
by exhibiting a mixed dependency on both sam-
ple properties it fails to display a systematic
distribution based on either of the sample prop-
erties. Likewise, a sample material requiring
three or more dimensions for its characterization
will not ordinarily develop a systematic pattern
in a 2D system. Generally, if the dimensionality
of the sample exceeds that of the system, com-
ponents of the sample will not be systematically
resolved in the system. The resulting retention
(separation) pattern is disordered and may be
termed “chaotic.”

3. Theory

We consider an n-dimensional separation sys-
tem in which the final position of a component
zone (or its center of gravity) is specified by the
individual distances along the coordinate axes:
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Xy, X, ....x,. These distances may be expressed
in terms of length of migration path, retention
time, or a column index number in coupled
column system [7]. The sample is fully character-
ized by the s sample parameters: p,, p,,. .. p..
This means that the molecular identity of a
component is fully established by specifying the s
values of the p’s. Generally the p space can be
occupied only at discrete intervals because of the
discreteness of molecular structure.

Since the set of s values of p uniquely estab-
lishes molecular identity, it also specifies the
position X; along each of the separative axes x,
and thus the final position of the component in
the system. In mathematical form

X, =X(p,.Pss--- D)) (H

The relationship expressed by Eq. (1) will
normally be a complicated one. particularly in
chromatography where the intermolecular inter-
actions controlling the displacement distances
X, X,....are not rigorously calculable. Many
efforts have been made to establish the nature of
these relationships and various approximate
equations have been developed (e.g., Ref. [11]).
However, our arguments do not depend on the
specific nature of the relationships, but only on
the assumption that such relationships exist and
that they are systematic.

We observe that there are n equations (one for
cach system dimension) of the type shown in Eq.
(1). Given a specific component and its associ-
ated p values, all n of the coordinate positions
are fixed by the n equations. However, given an
observed set of coordinate values. X,
X,,...X,, the p values (and thus the com-
ponent identity) may or may not be established
by the n expressions of Eq. (1). If n=s, the s
values of p will be fixed. If n<s, then the
component properties cannot be obtained
because there are fewer equations (n) than
unknown parameters (the s values of p) that
must be obtained from the equations.

If the properties represented by the p’s were
continuous variables (not discretized by molecu-
larity), then for n <s a given coordinate position
would correspond to any of a number of differ-

ent combinations of p values. Because p values
are in fact discrete, it is best to consider a small
volume element of system space corresponding
to a resolution element (an element barely large
enough for component resolution) located in the
intervals éx,, 8x,,...8x,. Such a volume ele-
ment might be occupied by any one of an
assortment of components, or by two or more
unrelated (insofar as permitted in p space) com-
ponents (an example of statistical peak overlap),
depending on the phase of different arrays of
discrete points in the vicinity. The possibility of
finding unrelated components in the same res-
olution element would make components identi-
fication based on coordinate position untenable
and would be conducive to the random dis-
tribution of peaks in the system.

Some of the implications of the n relationships
expressed by Eq. (1) are best understood by
examining a single system coordinate, x,. Given
a systematic dependence of the displacement
along this coordinate on the p’s, then a one-
dimensional (1D) sample characterized by only
one variable p, will have component peaks
distributed along x, according to an ordered
pattern. This does not mean that the spacing
between successive peaks is equal, but only that
the changes are systematic.

Normally, the incremental changes in X, due
to incremental changes in p,, p,, . . . p, will bear
no rational relationship to one another; that is,
AX,/Ap; will be unrelated to AX,/Ap,, and so on.
For example, for monounsaturated fatty acids
the separation caused by a unit increase in
carbon number will be unrelated to that caused
by a single shift in the position of the double
bond. Accordingly, a sample subject to both
variations will no longer exhibit any consistent
order in the spacing, AX,, between successive
peaks [1,12]. Thus the peak distribution along a
single dimension x will often appear to be
disordered (see Fig. 3). Any residue of order will
be further degraded by variations in additional
sample dimensions, that is, by incremental
changes along another p-axis. Thus the distribu-
tion of components along a given separation
coordinate will be most highly ordered for s =1
and increasingly disordered as s increases.
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Fig. 3. Hypothetical peak sequences resulting from incremental changes in two different sample parameters (such as carbon
number and substituent position) of sets of related molecules. (a) Systematic (and, in this hypothetical case, uniform) sequence of
peaks resulting from unit variations in a single sample parameter (structural factor) p,. (b) Sequence resulting from unit
incremental increases in a second sample parameter p,. (Note that the spacing between peaks is uncorrelated between a and b.)
(c) Superposition of two uncorrelated peak sequences shown in a and b illustrates how easily order is destroyed when more than
one sample parameter is subject to variation. (More complexity and disorder would be introduced if p, and p, varied
simultaneously.) (d) Sequence of lines (*’line chromatogram™) positioned at the center of gravity of the various peaks in c clearly

illustrates the considerable disorder in spacing between peaks.

In a similar vein, the systematic relationships
expressed by Eq. (1) assure us that a two-dimen-
sional sample will exhibit an ordered distribution
in a 2D separation system. A three-dimensional
sample, however, will generally exhibit disorder
in 2D system space; an ordered distribution in
most cases requires three dimensions of displace-
ment.

The above principles can be further illustrated
by computer calculations of the distribution of
points (corresponding to imaginary components)

in a plane and their subsequent projection onto
one of the edges (axes) of the plane to represent
a single dimension of displacement (see Fig. 4).
The sample is assumed to have dimensionality
s=2. To imitate the complexitics of real sys-
tems, the governing expressions are arbitrarily
composed and the coefficients (or their multi-
ples) unrelated. (Specifically, one coefficient
utilizes an irrational number, in the present case
7, to avoid the exact coincidence of points along
a given axis for different sets of p values.) The
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Fig. 4. Systematic distribution of points (corresponding to peak centers) on a plane and of same points projected onto the x, axis
of the plane. The points occur at the positions x, = X, and x, = X, found when index numbers (sample parameters) p, and p,
(e.g.. carbon number) are integers. (a) Distribution of points given by Egs. (2) and (3), shown at the top of the figure. (b)
Distribution given by Egs. (3) and (4), also shown at the top of the figure.
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assumed expressions for component displace-
ments X, and X, along axes x, and x, in Fig. 4a
are of a simple additive form

X, =0.5p, + (7/10)p, )
X,=0.2p, + (1/m)p, (3)

where the sample parameters p, and p, assume
integer values only. We observe that the plotted
points in Fig. 4a are distributed as an ordered
periodic array in 2D space. However, when
these points are projected along the x, axis
(corresponding to Eq. 2) much of the order
breaks down.

For real systems governed by more complex
equations and assorted fluctuations, very little
residue of order is expected in a 1D (one axis)
representation of a 2D (s = 2) sample. Thus if we
add to Eq. (2) a small correlation term such that

X, =0.5p, + (w/10)p, + 0.01p, p, )

the results shown in Fig. 4b emerge: The 2D
distribution is still fully ordered whereas the 1D
projection has become largely disordered.

The linear expressions of Eqs. (2) and (3) are
obviously oversimplified. These expressions have
been replaced by exponential equations more
representative of the dependence of chromato-
graphic migration on exp (— Au"/RT). where
the chemical potential change Au"” is a conse-
quence of partitioning. Plots based on this ex-
ponential form (Fig. 5) also produce an organ-
ized pattern of points in 2D system space. Again.
the projection of such points on one axis (not
shown) has few vestiges of order left.

While ideal separative displacements will be
subject to the systematic relationships of Eq. (1).
many real displacements will be subject to small
secondary variations superimposed on the back-
ground order. For example. the distribution
coefficient underlying the chromatographic
migration of components having hydrocarbon
chains of various lengths can be approximated by
using the concept of additive free energies |13]

Ap'=C+p(duty)) (5)

where Au' is the standard chemical potential
associated with phase transfer, C is a constant

Fig. 5. Organized pattern of points (peak locations) in 2D
space resulting from unit variations in sample parameters p,
and p,. The displacement positions X, and X, along axes x,
and x, are governed by exponential relationships much like
those controlling retention ratios or R, values in chrom-
atography. The assumed relationships are X, =1/[1+
0.1 exp®,)] and X.=1/[1+0.1 exp(d,)] where 6 =
(= Au/RT)=0.5p, + (w/10)p, and & =(—Ap)/RT)=
0.2p + (V/m)p-.

characteristic of the chemical family, and ApféHz
is the A" increment for a single CH, unit in the
hydrocarbon chain. While Eq. (5) leads to a
systematic relationship between chromatographic
retention and chain length parameter p,, actual
measurcments will reveal small second order
departures, both systematic and erratic, relative
to this equation. Second order systematic per-
turbations can presumably be described by more
sophisticated equations; erratic disturbances,
however. lead to small uncertainties in separa-
tive displacements. This may constitute a fertile
area for the application of fuzzy theory [14,15].

4. Sample dimensionality: further considerations

The sample dimensionality s, as noted, can be
considered as the number of independent vari-
ables requiring specification in order to identify
the components of a sample. It is not clear that a
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unique value of s exists for truly complex sam-
ples (or for what one perceives to be the full
range of variability of the sample), but logical
designations emerge (based largely on the re-
quirement that displacements be systematically
dependent on the p's as expressed by Eq. 1)
providing the sample is relatively simple. We
have already outlined a means for obtaining the
dimensionality of simple samples like the substi-
tuted fatty acids. However, some ambiguity may
exist as illustrated by the fact that the finite
number of discrete points (corresponding to
discrete molecules) in the s-dimensional sample
space of a complex sample can be numbered
according to some arbitrary sequence and in-
dividual components can then be specified in
terms of one variable, namely by their position
within this sequence. This ambiguity is largely
resolved, as noted above, by the condition that
observable sample properties (and thus displace-
ments) must be systematically dependent on the
chosen variable set.

A somewhat different definition for sample
dimensionality that incorporates the foregoing
condition equates s to the number of distinguish-
able sample variables or parameters sys-
tematically influencing sample properties, such
as distribution coefficients and electrophoretic
mobilities, that in turn control separative dis-
placements. Several difficulties can be expected
to arise in applying either definition, particularly
to high dimensional (large s) samples. For one
thing, the full variability of the sample must be
known, which is presently unlikely for complex
samples (e.g., plant extracts). On the other
hand, the dimensionality of such samples is
probably in the hundreds or thousands (perhaps
much higher), a value so high that its precise
determination has no practical implications
because there is no hope of achieving separative
order.

One complication in unequivocally predicting
order based on the relationship of the dimen-
sionalities s and » is that the major properties of
a sample may depend only very weakly on a
given sample variable (e.g., p;)- In such a case,
AX,/Ap; will be relatively small for such a weakly
expressed sample variable. The pattern resulting

from a sufficiently weak dependence will then be
washed out by resolution limits or by erratic
second order departures (as described above)
from the assumed systematic dependence of
displacement on the major variables. For exam-
ple, for mono-unsaturated fatty acids, chromato-
graphic retention will normally be strongly de-
pendent on carbon number and only weakly
dependent on the double bond position. In this
case a 1D chromatogram will display apparent
order despite s >n. When the sample is subject-
ed to separation in two dimensions, it will not
spread out in the 2D space available and thus
will not enjoy the advantageous peak capacity
afforded by 2D systems. The sample will, in-
stead, tend to accumulate in a narrow band as
shown in Fig. 6. Thus the behavior of a sample
with a weakly expressed variable is much like
that of a sample of lower dimensionality. The
lower dimensionality may be thought of as an
apparent dimensionality s', equal to the number
of variables expressed strongly enough to
produce suitable resolution. Thus a sample may
assume an ordered (or pseudo-ordered) arrange-
ment in a system for which s’ = n despite the fact
that s >n. The problem is that an observed
“point” (within resolution limits) in such an
ordered array may correspond to a number of
components differing in the value of the weakly
expressed variable(s). Consequently a point

Fig. 6. The components of a two-dimensional sample tend to
fall in a narrow band (shown as the region between the
broken lines) in a 2D system when one of the sample
variables or parameters is weakly expressed. The weak
expression of the one sample variable will greatly diminish
the effective peak capacity (see discussion in text).
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would not specify a single component, but only a
family of components in which the members
differ in the weakly expressed variable or param-
eter. Thus a peak observed in a normal 1D
chromatogram of monounsaturated fatty acids
may represent a given carbon number but could
include components with ditferent double bond
positions. The resolution of the latter compo-
nents would require using a separative mecha-
nism sensitive to double bond position and, in
most cases (see exception in next paragraph), a
separation system of dimensionality n=2 in
place of n=1.

A different pattern may emerge for sample
variables of intermediate expression, with AX,/
Ap, large enough to produce resolution but small
enough to localize components separated accord-
ing to property p,. Such components will often
appear as satellite peaks next to primary peaks
separated from one another by a stronger mech-
anism. The satellite peak structure can be re-
peated for successive primary peaks. Thus there
is a secondary order superimposed on a primary
pattern of repeating peaks. In such circum-
stances order can emerge for samples with di-
mensionality greater (by one unit) than n. In
theory a tertiary structure could arise for samples
with s=n+2, but extraordinary resolution
would be needed to make it observable. Sec-
ondary peak structures, however, are often pro-
duced by high-efficiency GC where the high
resolution accompanying a change in carbon
number leaves gaps to accommodate a secondary
pattern caused by changes in group position,
isomer expression, etc.

Still another facet of sample dimensionality is
that an analyst may not require the resolution of
components along all s sample coordinates. In
the foregoing example it may be found, depend-
ing on the goals of analysis, that only differences
in carbon number, not in group or double bond
position, need be resolved. Thus a required
dimensionality s” can be defined as the number of
sample variables that must be determined for
purposes of analysis. In an ideal system the
unneeded sample variables will also be weakly
expressed variables. giving s"=s". In this case,
and generally only in this case. the sample can be

systematically characterized in a system of di-
mensionality n = s".

An example is found in copolymer analysis.
The general structure A, -B, represents a two-
dimensional sample, as noted earlier, and can be
systematically distributed in a two-dimensional
system. However, the random copolymer A-B-
B-B-A-A-B-A-A . . . has a dimensionality of N,
the maximum number of chain elements. In
many cases one only needs N and the A/B ratio
for the purposes of analysis; the required di-
mensionality, s”, is therefore two. Size exclusion
chromatography, for all essential purposes, pro-
vides N. Adsorption or precipitation chromatog-
raphy gives the A/B ratio providing Eq. (5) is
applicable in the expanded form

Ap'=C +p, Ay +p, Apy (6)

This equation implies that the sequence of A
and B groups in the copolymer is unimportant. If
true, sample dimensions expressing group se-
quence will be weakly (in this case negligibly)
expressed. If this is the case, the desired 2D
pseudo-ordered distribution (s”=2) of random
copolymers can be obtained by combining the
above two chromatographic mechanisms. A
number of authors have pursued copolymer
characterization using such a combination of
mechanisms [16-20}.

4. Conclusions

Sample dimensionality s (or apparent dimen-
sionality s’'), in conjunction with system dimen-
sionality #n, appears to provide some predictive
capabilities with regard to ordered versus dis-
ordered component distribution following multi-
dimensional separation. It also indicates whether
the full peak capacity of multidimensional sys-
tems can be substantially exploited. In short,
when s >n (or more generally when s’ >n) the
component peak distribution is predicted to be
largely disordered, thus hindering separation.
When s <n, the component distribution is or-
dered but the greatly enhanced peak capacity of
the multidimensional system is not utilized.
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When the dimensionalities are equal, s = n, the
best possibility exists to fully exploit the power
of multidimensional separation without the se-
vere disadvantages of disordered peak distribu-
tion. These characteristics are summarized in
Table 1.

It is probable that some of these concepts
extend to other analytical methods, such as
NMR and optical spectroscopy. It is unlikely, for
instance, that a 2D system will provide any
significant advantages over a 1D system with a
1D sample, no matter what combination of
analytical techniques is employed.

Since system dimensionality n is subject to
experimental control, it would appear that one
could always design an analytical system proper-
ly balanced with respect to the sample. Un-
fortunately, multidimensional systems tend to be
complex in design and operation; this complexity
increases rapidly with dimensionality n. Huber
[21] has fully utilized a coupled column system
with n =3 with great success (over 6000 peaks
separated), but the difficulty of the project
suggests that higher n values would provide
extraordinary challenges except in probing local
regions of system space for specific components
(see Ref. [7]). Unfortunately, most s values will
be larger; for complex samples they are expected
to be in the hundreds or beyond. In these cases
there is no reasonable hope for designing a
system with n =s. Thus our realization of the
advantages of the n =s condition appears to be

Table 1

Order and disorder in separation patterns emerging from
different relationships between sample dimensionality s.
apparent sample dimensionality 5. and system dimensionality
n

'

s, s', n relationship Separation pattern

§s>s'>n Disordered”
s=s5'">n Disordered”
s>s'=n Pseudo-ordered
s=8"=n Ordered

s>s' <n Pseudo-ordered
s=s'<n Ordered

‘ May be pseudo-ordered or ordered with secondary pattern
when s' =n + 1.

limited to samples with components simply re-
lated to one another.

While the ideal conditions in which the two
dimensionalities balance (specified by n =s) may
not be practically achievable for most complex
samples, the present analysis offers additional
insight into the origins and conditions underlying
disordered peak distributions. Since chaotic dis-
tributions place extraordinary demands on sepa-
ration systems, it is important to have criteria
(namely s>n or s’ >n) for predicting their
existence.

It must be emphasized that the above analysis
is preliminary in nature. Many additional issues
must be addressed to evaluate the scope, signifi-
cance, and limitations of this approach.

List of symbols

C Constant in Eq. (5) or (6)
m Number of sample components
m/n_. Peak saturation
System dimensionality
Peak capacity
Number of theoretical plates
Sample parameter
Chain length parameter
Gas constant
Sample dimensionality
Apparent sample dimensionality
Required sample dimensionality
Temperature
Displacement axis
Component displacement position along
axis x,
Chemical potential change of phase trans-
fer
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